

PSpice AA Enhancements

PSpice Advanced Analysis Application Note | V1

Table of Contents

1	Introduction	3
2	How Can I Activate the New Enhancements?	4
3	How Can I Add Tolerances to Components?	5
4	Simulation of a Monte Carlo and Sensitivity Analysis in PSpice AA	9

1 Introduction

This Application Note covers:

- Introduction to the **Assign Tolerances** GUI to add tolerances to models, subcircuits, voltage / current sources and global variables.
- The steps to be followed to enable existing PSpice users to run PSpice Advanced Analysis modules on existing designs without any update of parts / models.

These enhancements allow that all existing PSpice users can run Advanced Analysis on existing designs, where there are components from Cadence library, models downloaded from website or models described by themselves.

Key functional enhancements:

- Ability to assign tolerances on device/model parameters
- Ability to assign tolerances on global variables
- Ability to assign tolerances on Voltage and Current sources
- Ability to assign tolerances on subcircuit parameters
- Models downloaded from web can be readily used in Advanced Analysis flow
- Enhancements in PSpiceAA GUI.

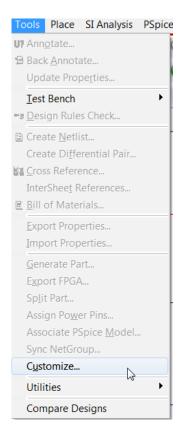
These enhancements are available up PSpice 17.2 Hotfix 11.

Note

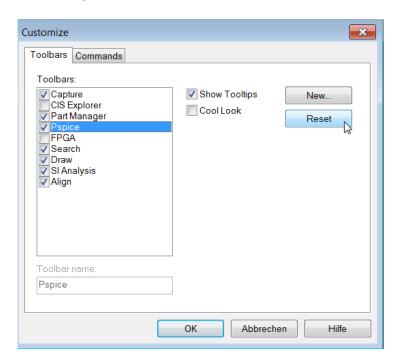
Attached with this Application Note, there is a design called mycuk_Solution with the whole configuration. The goal is that you design this circuit by yourself and try to get the same results.

To be considered

This document is thought to introduce the PSpice AA enhancements. It is not training or workshop. If you need more technical information about PSpice A/D and / or PSpice AA, please contact with FlowCAD.

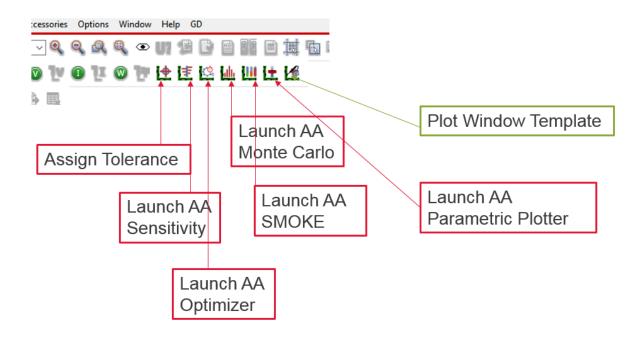

License for OrCAD PSpice Designer Plus or Allegro AMS Simulator is required.

FlowCAD



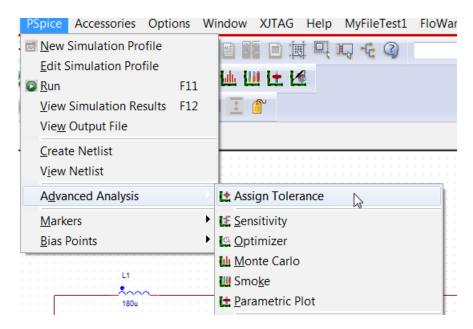
2 How Can I Activate the New Enhancements?

- 1. Open OrCAD Capture
- 2. Click on **Tools > Customize...**



3. Select **PSpice** and click on **Reset:**

FlowCAD


4. You will be able to see this new toolbar.

3 How Can I Add Tolerances to Components?

If you want to run a Monte Carlo or Sensitivity Analysis for your design in PSpice AA, you have to add tolerances at least to one component or variable, which is part of your circuit. To do that, follow the next steps:

1. Click on Assign Tolerance.

Next window will pop up:

Ssign Tolerance						×
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List	Value	5u				•
<mark>⊕</mark> Instance List						
Subckiefst						
]
Edit PSpice Model		Ok	Apply	Car	icel H	elp

In this GUI you can distinguish two areas.

- In the left, you can find the components you have used in your design, differentiating them between Instance View and Model View.
 - Instance View: It refers to each of the components placed on the design, distinguishing them by their part reference. For example, R1, R2, C2, D2, U1, Z2, etc.
 - Model View: it refers to the different PSpice Models you have used in your design. For example, IRF530, 1n4148, etc.
- In the right you can see the properties that define a component with their corresponding values, tolerances and distributions.
- 2. You can add tolerances (with flat or Gaussian distribution) to instances as Global, Instance and Subcircuit List:
 - Global List:

You can add tolerances to affect globally to all the instances that refer to such reference designator. In this case, Resistors, Inductors, Capacitors, Voltage and Current Sources. For global PARAM's it is the same issue. All the components, which refer to one of the global parameters defined in the component PARAM will use the same tolerance value.

Assign Tolerance
Instance View Model View
Global List
() R
🕲 🗖
🧃 C
@ V
🧌 I
⊕ Instance List

NOTE

The tolerances defined globally are saved in the PSpice.ini.

2 GLOBAL_TOLERANCE_R= 3 GLOBAL_TOLERANCE_L= 4 GLOBAL_TOLERANCE_C= 5 GLOBAL_TOLERANCE_V= 6 GLOBAL_TOLERANCE_I= 7 ASSIGNTOLUI_INSTANCEMODE= 8

Instance List:

In this list you can distinguish the tolerances that affect to each component placed in your design. It is organized using the reference designator. Resistor, capacitor, inductor, current and voltage source tolerances can be assigned in this GUI independently from each other. For example, you can assign a particular tolerance to R1 and another one to R2.

However, semiconductors or components which are described as PSpice Model in a PSpice Library, will be only readable in order to avoid that the original data is changed. Of course, librarians will be able to modify or define new tolerances if desired clicking on **Edit PSpice Model** directly from this GUI and opening the model description, but not directly from this GUI.

Assign Tolerance						×
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
+ Global List						
□ Instance List	a0	1.1025e-036				<u> </u>
🕅 C2	a1	1.1025e-036				
🕅 R1	a2	1.1025e-036				
🛐 V1	acde	1				
🕅 L1	af	1				
	agamma	1e-006				
🕅 C1	ags	0				
	akp	1e-006				
📓 IRF034	alpha	1.9				
	alpha0	0				
i ∎ D1	alpha1	0				
SubcktList						-
			Annh			lala
Edit PSpice Model		Ok	Apply		ancel	Help

SubcktList:

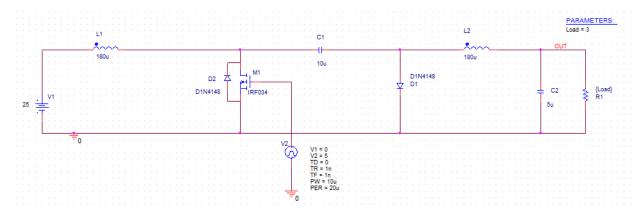
If you are using subcircuits in your designs, you have to take into account that there are two types of subcircuit parameters:

• Parameters related to devices embedded inside the subcircuit and not exposed to outer world. Model developer does not want this to change by design engineers. These parameters cannot be changed from this GUI. One need to follow edit model

editor flow for this. The subcircuit will be showed in Instance List and in the Subcircuit List (here only if .model statements are used).

Instance View Model View		Name	Value	PosTol	NegTol	Distribution	
🕅 C1	•			1			
🕅 C2		a0	1.1025e-036				-
🕅 R1		a1	1.1025e-036				
⊕— № U1		a2	1.1025e-036				
- SubcktList		acde	1				
b—≋∪1		af	1				
		agamma	1e-006				
⊕— ≋ C4 ⊕— ≋ D1		ags	0				
⊕ № D2		akp	1e-006				
ti .2		alpha	1.9				
		alpha0	0				
Б M M1		alpha1	0				
E RF034	-						
	27						

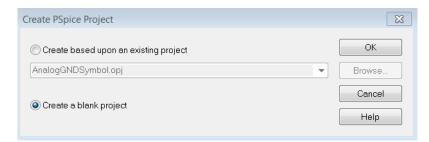
• Parameters exposed by model developer for designer to change. These are parameters exposed by PARAMS: statement in subcircuit definition. These parameters can be changed by designer from this GUI.


DCMOTOR						
						
······ ((++++++++++++++++++++++++++++++				-		
<u>+</u> ¥ / Ma						
- 11 C C						
CONST FRIC =	0	.05	5			
INERTIA = 1M						
K VISC = 0.2						
K TORQ = 1						
BACK EMF = 1						
L = 2.6m						
R = 234m						
2011						

nstance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List	R	234m	10%	10%		-
🖃 Instance List	L	2.6m				-
	BACK_EMF	1	5%	3%		•
	K_TORQ	1				•
🕅 R1	K_VISC	0.2	5%	10%		-
🔢 L4	INERTIA	1M	1%	1%		-
🕅 C4	CONST_FRIG	0.05				-
WBDCMOTOR WR_Load2 M3 R2 SubcktList						

4 Simulation of a Monte Carlo and Sensitivity Analysis in PSpice AA

In this module it is showed an example to understand how flow works and how tolerances for discrete and for semiconductor components are defined. For that, consider the following circuit:



Create a new Project

- 1. Open OrCAD Capture
- 2. Click on File > New > Project...

New Project	X
Name My_CUK	OK Cancel
Create a New Project Using	Help
PSpice Analog or Mixed A/D	Tip for New Users
PC Board Wizard	Create a new Analog or Mixed A/D project. The new project may be blank or copied from an existing template.
Programmable Logic Wizard	
Schematic	Learn With PSpice - Examples And AppNotes
Location	
D:\temp\MY_CUK	Browse

3. Select Create a blank project and click OK.

- 4. **Design** the circuit shown previously.
- 5. **Save**

Create Simulation Profile

1. Click on **PSpice > New Simulation Profile**

New Simulation			×
Name:			Create
Inherit From:			Cancel
none		•	
Root Schematic:	SCHEMATIC1		

2. Name it Trans and click Create

Simulation Settings - Trans		×
General Analysis Configuration F Analysis type: Time Domain (Transient) Image: Configuration F Options: Image: Configuration F Image: Configuration F Image: Configuration F Options: Image: Configuration F Image: Configuration F Image: Configuration F Image: Configur	Run to time: 5m seconds (TSTOP) Start saving data after: 0 seconds Transient options	
Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Save Check Points Restart Simulation	Maximum step size: 1 u seconds Skip the initial transient bias point calculation (SKIPBP) Run in resume mode Output File Options	
	OK Abbrechen Übernehmen Hilfe	

- 3. Click OK
- 4. Save

Note

If you do not define a Simulation Profile previously, you cannot open the Assign Tolerances UI.

FlowCAD


Set tolerances to the different components

Now you have to add the tolerances to the different components of the design. Consider that you are the librarian and the design engineer that is why, you will add the tolerances to the models D1, D2 and M1, because they have not been defined yet.

	Positive Tolerance	Negative Tolerance
L1	10%	5%
L2	15%	8%
C1	5%	3%
C2	5%	3%
V1	5%	5%
R1	3%	3%

		Positive Tolerance	Negative Tolerance
	bv	5%	7%
D1	Сјо	7%	10%
	ls	3%	3%
	bv	5%	7%
D2	Сјо	7%	10%
	ls	3%	3%
M1	Cgdo	5%	10%
	Cgdo Cgso	10%	10%

 Click on PSpice > Advanced Analysis > Assign tolerance. A warning message will appear, informing you that the design will be incompatible if you add tolerances using this UI with releases prior to SPS17.20.011. Just click OK.

FlowCAD

- 2. Define the tolerances for the discrete parts and the voltage source.
 - As L1 and L2 have different tolerances, you have to define them using the Instance List:

						Σ
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List	Value	180u	10%	5%		•
Assign Tolerance						2
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List Global List Global List Global List Global C2 Global	Value	180u	15%	8%		*

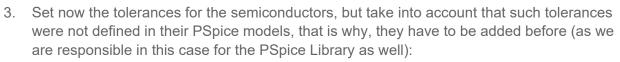
-

- As C1 and C2 have the same tolerances, we can define them in the Global List:

Ssign Tolerance						Σ
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List	Value		5%	3%		-
() R						
@ L						
🕲 C						
🗿 V						
🗿 PARAM						

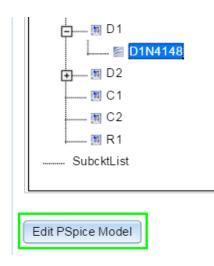
NOTE

The global tolerances defined in the Global List are saved in your PSpice.ini.

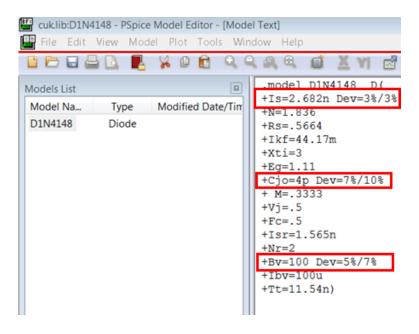

PSpice.ini - Notepad2
File Edit View Settings ?
🗋 🧉 🗔 📕 🧉 🔍 👗 🗈 🏝 👫 촧. 🗐 🔍 🤤 📰 🛃 🕸
1
2 [PSPICE ADVANCED ANALYSIS]
3 DISCRETE_TABLE_COUNT=6
4 DISCRETE_TABLE_FILE1=DiscreteTables\Capacitance\cap.table
5 DISCRETE_TABLE_ALIAS1=Capacitor
6 DISCRETE_TABLE_TYPE1=Capacitance
7 DISCRETE_TABLE_FILE2=DiscreteTables\Inductance\ind.table
8 DISCRETE_TABLE_ALIAS2=Inductor
9 DISCRETE_TABLE_TYPE2=Inductance
10 DISCRETE_TABLE_FILE3=DiscreteTables\Resistance\res1%.table
11 DISCRETE_TABLE_ALIAS3=Resistor - 1%
12 DISCRETE_TABLE_TYPE3=Resistance
13 DISCRETE_TABLE_FILE4=DiscreteTables\Resistance\res0.1to0.5%.table
14 DISCRETE_TABLE_ALIAS4=Resistor - 5%
15 DISCRETE_TABLE_TYPE4=Resistance
16 DISCRETE_TABLE_FILE5=DiscreteTables\Resistance\res2to10%.table
17 DISCRETE_TABLE_ALIAS5=Resistor - 10%
18 DISCRETE_TABLE_TYPE5=Resistance
19 DISCRETE_TABLE_FILE6=DiscreteTables\Resistance\res_r107.table
20 DISCRETE_TABLE_ALIAS6=Resistor - RL07
21 DISCRETE_TABLE_TYPE6=Resistance
2 GLOBAL_TOLERANCE_R=
3 GLOBAL_TOLERANCE_L=
4 GLOBAL_TOLERANCE_C="DEV 5%/3%"
5 GLOBAL_TOLERANCE_V=
6 GLOBAL_TOLERANCE_I=
27 ASSIGNTOLUI_INSTANCEMODE=
72

- For V1:

Assign Tolerance						Σ
Instance View Model View	Name	Value	PosTol	NegTol	Distribution	
Global List	DC	25	5%	5%		-
Instance List G2 R1 Istance List L1 Istance List L2						


- For R1:

Assign Tolerance							2
Instance View Model View		Name	Value	PosTol	NegTol	Distribution	
Global List Instance List Instance List Instance V1 Instance V1	*	Value	{Load}	3%	3%		¥



D1 and D2 are using the PSpice Model D1N4148. Highlight it and click on Edit PSpice Model.

FlowCAD

- Add the tolerances to the parameters indicated before in this way:

Now you can see such values on the **Assign Tolerance GUI**, but they are only readable, because as it was said, what you have done in first step of 3. is what the librarian typically does. It is not pretended to allow to change tolerances of PSpice models from this GUI in order to protect them.

Note

The first number in Dev is the positive tolerance and the second one is the negative tolerance. On the other hand, as we are changing components from the default Cadence

FlowCAD

Libraries, a new library will be automatically generated and attached to our design (automatically added to your simulation profile).

tance View Model View	Name	Value	PosTol		Distribution	
] Global List						
Instance List	cjo	4e-012	7%	10%		4
🛐 C2	bv	100	5%	7%		
🕅 R1	is	2.682e-009	3%	3%		
🛐 V1	n	1.836				
🕅 L1	fc	0.25				
	ibv	0.0001				
□ C1	ibyl	0				
┣ 聞 D1 │ ↓ ₪ D1N4148	ikf	0.04417				

- M1 is using the PSpice Model IRF034. Highlight it and click on Edit PSpice Model.
- Add the tolerances to the parameters indicated before in this way:


CUK.lib:IRF034 - PSpice Model	Editor - [Model	Textl			
File Edit View Model P	-	-			
			X	1 🛃	
Models List	8	.model 1		NN	105 (
Model Na Type Mod IRF034 MOS D1N4148 Diode	dified Date/Time	+Level=3 +Gamma=(+Delta=0 +Theta=0 +Theta=(+Cgso=5 +Cgdo=4 +Vmax=0 +Tox=100))).2 79p Dev 56.3p D xj=0		
Assign Tolerance					
Assign Tolerance	Name	Value		A NegTol	Distribution
	Name	Value	PosTol	▲ NegTol	Distribution
Instance View Model View	Name	Value 5.79e-010		 NegTol 10% 	Distribution
Instance View Model View			PosTol		Distribution
Instance View Model View Termin Global List Termin Instance List Termin III C2 Termin III R1	cgso	5.79e-010	PosTol 10%	10%	Distribution
Instance View Model View	cgso cgdo	5.79e-010 4.563e-010	PosTol 10%	10%	Distribution
Instance View Model View → Global List → Blobal List → Blobal List →	cgso cgdo pdvt0w	5.79e-010 4.563e-010 0	PosTol 10%	10%	Distribution
Instance View Model View	cgso cgdo pdvt0w acde	5.79e-010 4.563e-010 0 1	PosTol 10%	10%	Distribution
Instance View Model View → Global List → Instance List → IR R1 → IR L1 →	cgso cgdo pdvt0w acde af	5.79e-010 4.563e-010 0 1 1	PosTol 10%	10%	Distribution
Instance View Model View	cgso cgdo pdvtDw acde af agamma	5.79e-010 4.563e-010 0 1 1 1e-006	PosTol 10%	10%	Distribution
Instance View Model View Global List Global List Global List R1 Global L1 Global L1 Global L1 Global L1 Global L1 Global L1 Global L2 Global	cgso cgdo pdvt0w acde af agamma ags	5.79e-010 4.563e-010 0 1 1 1 1e-006 0	PosTol 10%	10%	Distribution
Instance View Model View Global List Global List R1 K1 K1 K1 K1 K2 K1 K1 K2 K1 K2 K2	cgso cgdo pdvt0w acde af agamma ags akp	5.79e-010 4.563e-010 0 1 1 1 1e-006 0 1e-006	PosTol 10%	10%	Distribution

4. Click on **Apply** or **OK** to save your changings and close Assign Tolerance window.

Simulate and define goals

- 1. Simulate the transient Analysis simulation profile you created previously.
- 2. Set the **Voltage Differental marker** on the output net to visualize the results in the Probe Window (take into account that a CUK converter inverts the signal):

- 3. Click on Trace > Measurements
- 4. Select **Max** and click **Eval**:

5. Write **V(0,OUT)**

Arguments for Measurement Evaluation
Measurement Expression
Max()
The Measurement 'Max' has 1 argument. Please fill it in now.
Name of trace to search 🔛 V(0,OUT)
OK Cancel

- 6. Click **OK** twice.
- 7. Select Max_XRange and click Eval.
- 8. Write these arguments:

Arguments for Measurement Evaluation
Measurement Expression
Max_XRange(v(0,OUT), 1.6m,)
The Measurement 'Max_XRange' has 3 arguments. Please fill them in now.
Name of trace to search 🔛 v(0,OUT)
X range begin value 1.6m
X range end value 1.7m
OK

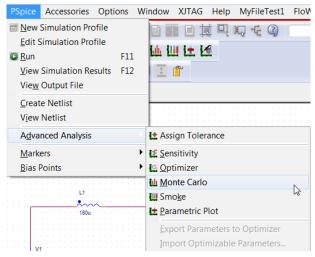
9. Click **OK** twice.

10. Click on View > Measurements Results. You will see something like that:

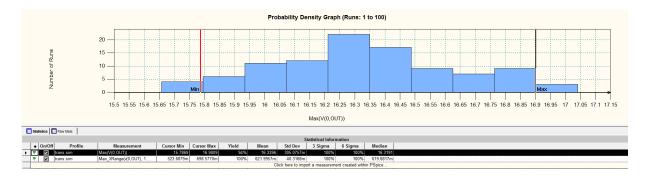
	Evaluate	Measurement	Value
	1	Max(V(0,OUT))	16.3591202446
•	1	Max_XRange(v(0,OUT), 1.6m, 1.7m)	14.6955706308

11. Modify the second measurement like the image. Just click over the measurement expression for that:

	Evaluate	Measurement	Value
	v	Max(V(0,OUT))	16.3591202446
Þ	√	Max_XRange(v(0,OUT), 1.6m, 1.7m) - Min_XRange(v(0,OUT), 1.6m, 1.7m)	620.1948351717m



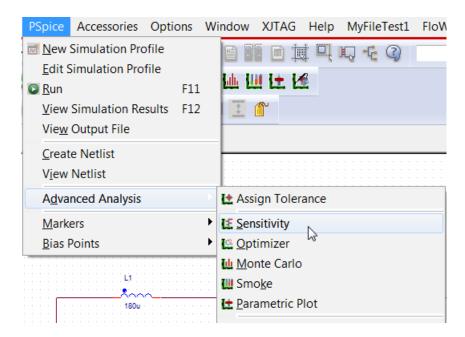
Note


Remember that the measurements are the **goals** or requirements that must be achieved by your design. Each of these measurements will be used in PSpice Advanced Analysis to calculate the yield of your design or the sensitivity of the components in relation to the tolerances defined before.

Monte Carlo Simulation in Advanced Analysis

1. In OrCAD Capture, click on **PSpice > Advanced Analysis > Monte Carlo.**

- 2. Click on **Click here to import a measurement created within PSpice** to import the defined measurements in PSpice A/D:
- 3. Click OK.
- 4. Click on Edit > Profile Settings and select Number of Runs to 100.
- 5. Simulate.
- 6. Analyze the results:


It is possible to analyze in a glance the Yield achieved for each measurement and compare it with your requirements.

	Statistics Raw Meas											
	Statistical Information											
	٠	On/Off	Profile	Measurement	Cursor Min	Cursor Max	Yield	Mean	Std Dev	3 Sigma	6 Sigma	Median
•	٣	\checkmark	trans.sim	Max(V(0,OUT))	15.7869	16.9009	94%	16.3396	305.0757m	100%	100%	16.3191
	٣	~	trans.sim	Max_XRange(v(0,OUT), 1	523.6879m	698.5770m	100%	621.9957m	40.3168m	100%	100%	619.6817m
	Click here to import a measurement created within PSpice										d within PSpice.	

Sensitivity Simulation in Advanced Analysis

1. Come back to OrCAD Capture and click **PSpice > Avanced Analysis > Sensitivity.**

2. A window pops up with a list of all the component which have associated tolerances:

	Component	Parameter	Original
۲	V1	DC	25
	L1	VALUE	180u
	L2	VALUE	180u
	C1	VALUE	10u
	C2	VALUE	5u
	R1	VALUE	3
	D1N4148(model)	bv	100
	D1N4148(model)	cjo	4e-012
	D1N4148(model)	is	2.6820000000000e-009
	IRF034(model)	cgdo	4.56300000000000e-010
	IRF034(model)	cgso	5.79000000000000e-010
		<u> </u>	1

- 3. Click on **Click here to import a measurement created within PSpice a**nd import the measurement defined in PSpice A/D.
- 4. Run simulation.
- 5. Analyze the results for each measurement:

							Sensitivity Component Filter = [*]
	Component	Parameter	Original	Negtol(%)	Postol(%)	Rel Sensitivity	Linear
•	C1	VALUE	10u	3	5	3.4286m	3
	C2	VALUE	5u	3	5	-1.8593m	1
	D1N4148(model)	is	2.6820e-009	3	3	294.7465u	< MIN >
	D1N4148(model)	cjo	4e-012	10	7	-27.9533u	< MIN >
	D1N4148(model)	bv	100	7	5	15.9603u	< MIN >
	IRF034(model)	cgso	5.7900e-010	10	10	652.1929u	< MIN >
	IRF034(model)	cgdo	4.5630e-010	10	5	-6.3237m	5
	L1	VALUE	180u	5	10	-1.5216m	1
	L2	VALUE	180u	8	15	-7.0366m	6
	R1	VALUE	3	3	3	112.5300m	99
	V1	DC	25	5	5	72.9084m	64
1							

	٠	On/Off	Profile	Measurement	Original	Min	Мах
•	٣	 Image: A start of the start of	trans.sim	Max(V(0,OUT))	16.3592	15.4188	17.1224
	٣	<	trans.sim	Max_XRange(v(0,OUT), 1.6m,	620.4989m	492.4080m	733.1870m

6. Observe that the Negtol and the Postol for each parameter are shown well in % or well in variation:

	Component	Parameter	Original	Negtol(%)	Postol(%)
۲	C1	VALUE	1 0u	3	
	C2	VALUE	5u	3	5
	D1N4148(model)	is	2.6820e-009	3	3
	D1N4148(model)	cjo	4e-012	10	7
	D1N4148(model)	bv	100	7	5
	IRF034(model)	cgso	5.7900e-010	10	10
	IRF034(model)	cgdo	4.5630e-010	10	5
	L1	VALUE	180u	5	10
	L2	VALUE	180u	8	15
_	R1	VALUE	3	3	3
	V1	DC	25	5	5

Click RMB > Display Values

5	3 -7.7875 10 15.6043k	
5	Find in Design	
3	Disp <u>l</u> ay	Absolute Sensitivity
3	<u>B</u> ar Graph Style	<u>R</u> elative Sensitivity
3	Component Filter	Values
	Send To Optimizer	✓ <u>T</u> olerances
	🖌 Cu <u>t</u>	
	© <u>С</u> ору	
	🖨 <u>P</u> aste	
	<u>D</u> elete	

	Component	Parameter	Original	@Min	@Max	Rel Sensitivity
•	C1	VALUE	10u	9.7000u	10.5000u	3.4286m
	C2	VALUE	5u	5.2500u	4.8500u	-1.8593m
	D1N4148(model)	is	2.6820e-009	2.6015n	2.7625n	294.7465u
	D1N4148(model)	сјо	4e-012	4.2800p	3.6000p	-27.9533u
	D1N4148(model)	bv	100	93	105	15.9603u
	IRF034(model)	cgso	5.7900e-010	521.1000p	636.9000p	652.1929u
	IRF034(model)	cgdo	4.5630e-010	479.1150p	410.6700p	-6.3237m
	L1	VALUE	180u	198u	171u	-1.5216m
	L2	VALUE	180u	207u	165.6000u	-7.0366m
	R1	VALUE	3	2.9100	3.0900	112.5300m
	V1	DC	25	23.7500	26.2500	72.9084m