Working with the PADS to Allegro Translator

Product Version SPB 16.6
Rev 2.0

March 10, 2015
Copyright Statement

© 2015 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence and the
Cadence logo are registered trademarks of Cadence Design Systems, Inc. All others are the
property of their respective holders.
Contents

Working with the PADS to Allegro Translator ... 1
Purpose .. 4
Audience .. 4
Licensing requirement to run the translator ... 5
What is PADS Translator? ... 5
 What are PADS PowerPCB and PADS Layout 2005? .. 5
Prerequisites for running the translator .. 6
Steps involved in the translation .. 7
 Creating a PADS ASCII Database File ... 7
 Creating an options file ... 8
 Running the translator .. 8
Changing Class/subclass in layer mapping window ... 13
Files Generated during translation .. 14
Verifying Database after Translation is completed ... 15
Constraints Support .. 17
 Object mapping ... 17
 Constraints mapping ... 18
 Translation of RULES_SECTION of PADS .asc to the Constraint Manager 20
Translating PADS library .. 22
 Exporting data from Mentor PADS ... 23
 Library data mapping .. 24
 Pads_lib_in translator usage .. 24
 Layer mapping ... 25
 Result files options ... 27
 Translation log review ... 27
 Batch translation mode ... 28
Known problem and their solutions .. 29
 pads_in translator translates thermal ties with a zero line width. 29
 pads_in fails with error for illegal characters in ASCII file 29
 Pads_in fails with no error in log file ... 30
 What is character name limits for pads translation? ... 30
 Pads_in fails with older version of PADS ASCII file .. 31
 Pads_in creates lots of Net shorting DRCs for cross hatch shape. 32
 Artwork fails with below error message on translated board. 32
Summary .. 33
Purpose

This document helps users to translate a PADS ASCII file to an Allegro® PCB Editor file. It also covers scenarios where PCB Editor gives errors or warnings during the translation and explains how to resolve the problems. Although this document covers exhaustive scenarios where PCB Editor gives a warning or error, users can visit https://support.cadence.com if the issue is not resolved by the methodology described below.

Audience

Design engineers and CAD groups who intend to translate PADS ASCII data to Allegro PCB Editor. The assumption is that the user has hands-on experience using Allegro PCB Editor. Familiarity with PADS Layout will be helpful.
Working with the PADS to Allegro Translator

Licensing requirement to run the translator.

The PADS translator can be run on all tiers of Allegro PCB Editor.

What is PADS Translator?

The PADS translator (pads_in) imports information from PADS Layout ASCII database files (.asc) into Allegro PCB Editor board database files (.brd). It is assumed that the PADS databases being translated are completed (placed and routed).

What are PADS PowerPCB and PADS Layout 2005?

These are CAD tools used to design layouts and generate fabrication files for Printed Circuit Boards.

Note: PADS (formerly PowerPCB) is now a part of Mentor Graphics.

You can visit the PADS web site: http://www.mentor.com/products/pcb-system-design/design-flows/pads/ for more information on the above tools.
Prerequisites for running the translator

- **PADS ASCII file (.asc)**

PADS Layout creates an ASCII database version file (.asc), which contains all information about decal, part type, part, signal (logical connectivity), route (physical connectivity), and graphics.

The component mapping from PADS ASCII file to Allegro prototypes is given below.

<table>
<thead>
<tr>
<th>Pads objects</th>
<th>Allegro objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT</td>
<td>Text</td>
</tr>
<tr>
<td>LINES</td>
<td>Cline or Line</td>
</tr>
<tr>
<td>PART</td>
<td>Components</td>
</tr>
<tr>
<td>ROUTE</td>
<td>Pin Cline</td>
</tr>
<tr>
<td>POUR</td>
<td>Shape</td>
</tr>
<tr>
<td>VIA</td>
<td>Via</td>
</tr>
<tr>
<td>PARTDECAL</td>
<td>Package Symbol</td>
</tr>
<tr>
<td>PARTTYPE</td>
<td>Device Type</td>
</tr>
<tr>
<td>LAYER DATA</td>
<td>Class/Subclass</td>
</tr>
<tr>
<td>TESTPOINT</td>
<td>Testpoint</td>
</tr>
</tbody>
</table>

- **Options file (.ini)**

This is the PADS to Allegro PCB Editor Layer mapping file. The correctness of the Allegro PCB Editor .brd file translated from the PADS database depends on the correctness of the Copper layer mapping in the layer mapping file.

The default pads_in.ini file is located at %CDSROOT%/tools/pcb/bin. Users should make a copy of the pads_in.ini file in their Working folder and modify the same.
Steps involved in the translation

1. Create a PADS ASCII file.

2. Create an options file and map the PADS and Allegro PCB Editor layers.

3. Run the translator.

 In case of any errors, the translation fails.

4. Open the log file to view the errors.

5. Correct the error either in the .asc or .ini files. At times you may need to recreate the .asc file.

6. Rerun the translator.

7. Open the translated .brd file and review all aspects (pad geometries, symbol geometries, stackup, shapes, and so on.) of the design for completeness and correctness.

Note that the translator does not guarantee 100% translation of everything. You need to edit the design that can be maintained completely within Allegro PCB Editor.

Creating a PADS ASCII Database File

The PADS job file (.pcb) must be converted to a PADS ASCII database (.asc) that the translator can read. This file contains all decal, part type, part, signal, route, and graphic data that are part of the job file. An ASCII database is self-contained and does not require any information from PADS library files.

Note: The PADS ASCII input file is an ASCII export of the PADS database. It should be exported directly from the PADS system and must not be hand-edited.

1. Open PADS and load the JOB database file (.pcb) to translate.

2. Re-pour all copper pour areas (if any).

3. Choose Export — ASCII OUT to display the ASCII Output form.

4. Choose the Select All option to output all data in the database.

 Choose this option only if you want to translate the complete database.

5. Select the PADS Layout V2005.2 format or the latest available.

6. Specify the output file name and click OK.

Note: -Many a times the database integrity issues in PADS ASCII file may lead to problems during import. Before creating a PADS ASCII file, run database integrity check in PADS. This can be done by using the keyboard shortcut i.

March 10, 2015 7 Product Version 16.6
Creating an options file

The Options file is probably the most important piece of information needed to successfully run the translation.

Allegro is designed around the concept of named CLASSes and SUBCLASSes; Whereas PADS uses the concept of named database layers.

The Options file provides the mapping between PADS named_database_layers to Allegro CLASSes and SUBCLASSes.

The PADS designer could work in tandem with Allegro designer when creating the Options file. The PADS designer knows what data is kept on which layer and Allegro designer can then map the layer to the appropriate class/subclass.

Note: As mentioned earlier, if the Options file is not correctly mapped, data will be lost during translation. The pads_in.log file lists data that is not mapped.

The default pads_in.ini file is located at %CDSROOT%/tools/pcb/bin.

You should make a copy of the pads_in.ini file in your working folder and modify the same.

Running the translator

The PADS Layout translators can be run in the batch mode by specifying all required information on the command line, from program menu, or from the tool. All these methods call the pads_in.exe executable which exists in %CDSROOT%/tools/pcb/bin.

a) From DOS prompt.
 From a DOS prompt (Start — Run; cmd)

 Execute pads_in command

 ![pads_in command](image)
b) From Start — Programs — Cadence, choose Release xx.x — PCB Editor Utilities — PADS Translator.

The above methods of invocation will bring up the File Names window.

In the fields, enter the following:

- **PADS ASCII input file**: The PADS ASCII file (.asc) created in the PADS layout tool.
- **Output directory**: Directory in which the output file needs to be created.
- **Options file**: The full path to an options. The default is the pads_in.ini in %CDSROOT%/tools/pcb/bin.

You can use the Browse button to locate the files. Click OK after you have specified all the information.
Working with the PADS to Allegro Translator

The pads_in application reads the input file and determines the number of etch/conductor layers it uses. If all required program arguments are not specified, the PADS To Allegro Translation Options dialog box appears.

![PADS To Allegro Translation Options](image)

The window allows you to modify the pads_in.ini file before translation begins.

Avoid editing the default pads_in.ini file located at \%CDSROOT\%/tools/pcb/bin. Make a copy of the pads_in.ini file in the working folder and modify the same.

The PADS to Allegro Layer Mapping fields define the element-layer mappings. The list box contains all PADS objects (Lines, Copper, Text, Decals, Pads and Vias) and the name of the class and subclass to which to map the objects.

Although the default mapping is done according to the pads (.asc) file, you can map the class / subclass name, if needed.

Each element appears once for each PADS layer, for a total of 31 entries per element. All 2D lines on PADS layer 0 map are added to the BOARD/SUBSTRATE GEOMETRY class and the subclass ALL, which is not pre-defined. Lines on PADS layer 1 map to the ETCH/CONDUCTOR class and the subclass TOP/SURFACE and so on. The translator presets all-necessary ETCH/CONDUCTOR class mappings by default, even if a previous translation created the options file. This is also true during batch translations.
Working with the PADS to Allegro Translator

Detailed mapping is described in the section Changing Class/subclass in layer mapping window.

1. In Allegro PCB Editor, either:
 - Choose File — Import — Cad Translators — PADS
 Or
 - In the command window type, pads in

 ![Command Example](image)

 In both the cases the following translator window appears.

 ![PADS IN Window](image)

 2. Select Show options dialog to bring up the PADS to Allegro layer mapping window. If this checkbox is not selected, the translator uses options specified in the .ini file.

 3. Click Translate to start the translation.

 A window appears displaying the progress of the translation process.
Working with the PADS to Allegro Translator

The *PADS to Allegro Translator* window appears, showing each section of the ASCII file that is getting translated.

If the translation is successful, the translated `.brd` file is saved in the folder mentioned in the *Output Design* field.

4. Click *Viewlog* to view the log file. The file is generally created in the Working folder. If translation fails, you can view the log file to see the error and warning messages.
Changing Class/subclass in layer mapping window

When you select an element in the PADS To Allegro Translations Options window, the target class and subclass are shown in the Class and Sub Class lists.

To change the target class and subclass, select a new class or subclass from the lists. You can also type a new subclass name in the Sub Class field.

Select Create solder layers to create solder mask and solder paste padstack layer entries and to specify the oversize radius in mils.

The solder mask pad layer entry is added to the SOLDERMASK_TOP subclass, and the solder paste entry is added to the PASTEMASK_TOP subclass. The oversized value is added to the padstack size.

For example, if the oversize is 15, a 60mil pad generates a 75mil solder mask and paste layer entry.

Selecting Create Dynamic Shapes creates dynamic shapes from POUROUT and HATOUT pieces from the POUR section.

Click OK to continue with the translation.
Files Generated during translation

The following files are generated in the output directory after translation is complete:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pads_in.log</td>
<td>The translator log file.</td>
</tr>
<tr>
<td><name>.brd</td>
<td>The board file where <name> is the name of the ASCII database file. For example, TEST.asc would produce TEST.brd.</td>
</tr>
<tr>
<td><name>.txt</td>
<td>The netlist create and used by the translator, where <name> is the name of the ASCII database.</td>
</tr>
<tr>
<td>netin.log</td>
<td>The log file created by the netin contains netlist and command used by the translator.</td>
</tr>
<tr>
<td><deviceName>.txt</td>
<td>The device file where deviceName is the name of a device used in the design.</td>
</tr>
<tr>
<td>Devices.map</td>
<td>The device name mapping file. This is used because PowerPCB or Pads Layout allows long device (part type) names. You can use this file as a reference to see how names were translated.</td>
</tr>
<tr>
<td>Names.map</td>
<td>The Pads name to Allegro PCB Editor name change mapping file. This file is generated whenever there is change in names while translation.</td>
</tr>
<tr>
<td>techfile.log</td>
<td>The log file created by the techfile command used by the translator.</td>
</tr>
<tr>
<td><name>.dcf</td>
<td>The techfile created and used by the translator, where <name> is the name of the ASCII database.</td>
</tr>
</tbody>
</table>

Most of these are temporary files generated for use by the translator. They remain in the output directory only for reference. The key file is the Allegro PCB Editor board (.brd) file, which you need to edit the design.
Verifying Database after Translation is completed

After the PADS translation finishes, load the board file into Allegro PCB editor. To create a design that can be maintained completely within the Allegro PCB editor, follow these steps:

1. Run viewlog to display the translators’ log file. Examine the file for any errors or warnings. Also examine the netin.log file for any warnings or errors.

 Pads_in.log file displays the unmapped layers in the log file for non-etch layer, which has data in it.

For example:

 ==
 PADS layer usage summary:
 Layers 1 to 6 are route layers.
 LINES:
 0 BOARD GEOMETRY - PLATING_BAR
 3 ETCH - Inner Layer 3
 24 * Not mapped!
 COPPER:
 TEXT:
 0 BOARD GEOMETRY - ALL
 1 ETCH - TOP
 2 ETCH - Inner Layer 2
 3 ETCH - Inner Layer 3
 4 ETCH - Inner Layer 4
 6 ETCH - BOTTOM
 19 * Not mapped!
 20 * Not mapped!
 21 * Not mapped!
 22 * Not mapped!
 23 * Not mapped!

 In the above example, the Layer 24 has LINE data and Layer 19 has TEXT data in asc file which is not mapped to Allegro PCB editor Layers in ini file. You need to map this manually to include in the translation.
2. Choose Display — Color/Visibility (color192 command) to enable the following minimum Class/SubClass:

- Board Geometry/Outline
- Pin, Via, DRC, and Etch/Conductor in the Stack-Up group

3. Choose Display — Status to check for any Unrouted/ Unconnected connections, Out of Date shapes, and DRC errors. Click Update to Smooth and Update DRC in the same dialog box.

The translator creates place bounds for all package/part symbols based on the boundaries of objects found within the PADS decal.

4. Check constraints for your design. Depending on the version of the tool you are using and the type of constraints you are setting; choose Setup — Constraints — Constraint Manager (cmgr command).

5. Choose Tools — Database Check (dbdoctor command) to verify the integrity of the design database. View the log file, and make the necessary corrections.
Constraints Support

PADS Translator also imports the constraints information from the PADS database to Allegro PCB Editor.

In PADS .asc file RULES_SECTION section and all its subsections from the .asc file are translated to Allegro PCB Editor.

Object mapping

The following table represents mapping between PADS and Allegro PCB Editor objects used in the .asc file.

<table>
<thead>
<tr>
<th>PADS object</th>
<th>Allegro object</th>
</tr>
</thead>
<tbody>
<tr>
<td>RULE_SET</td>
<td>CSet; depending on what rules are defined in PADS, it may be expanded up to 4 csets: spacing, same_net spacing, electrical and physical</td>
</tr>
<tr>
<td>NET</td>
<td>Net</td>
</tr>
<tr>
<td>NET_CLASS</td>
<td>Class</td>
</tr>
<tr>
<td>GROUP</td>
<td>A set of separate from to</td>
</tr>
<tr>
<td>CONNECTION</td>
<td>Pin pair</td>
</tr>
<tr>
<td>DIFF_PAIR</td>
<td>Diff_pair (see dif_pair translation section)</td>
</tr>
<tr>
<td>PAD</td>
<td>Pin</td>
</tr>
<tr>
<td>COPPER</td>
<td>Shape</td>
</tr>
<tr>
<td>TRACK</td>
<td>Line</td>
</tr>
<tr>
<td>BODY</td>
<td>Package</td>
</tr>
</tbody>
</table>
Constraints mapping

The following table represents mapping between PADS and Allegro constraints with their categories when translated to constraints.

<table>
<thead>
<tr>
<th>Pads constraints</th>
<th>Allegro constraint</th>
<th>Allegro rule type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLEARANCE_RULE</td>
<td></td>
</tr>
<tr>
<td>VIA_TO_TRACK</td>
<td>Via to Line</td>
<td>Spacing</td>
</tr>
<tr>
<td>VIA_TO_VIA</td>
<td>Via to Via</td>
<td>Spacing</td>
</tr>
<tr>
<td>PAD_TO_TRACK</td>
<td>Pin to Line</td>
<td>Spacing</td>
</tr>
<tr>
<td>PAD_TO_VIA</td>
<td>Pin to Via</td>
<td>Spacing</td>
</tr>
<tr>
<td>PAD_TO_PAD</td>
<td>Pin to Pin</td>
<td>Spacing</td>
</tr>
<tr>
<td>SMD_TO_TRACK</td>
<td>SMD to Line</td>
<td>Spacing</td>
</tr>
<tr>
<td>SMD_TO_VIA</td>
<td>SMD to Via</td>
<td>Spacing</td>
</tr>
<tr>
<td>SMD_TO_PAD</td>
<td>SMD to Pin</td>
<td>Spacing</td>
</tr>
<tr>
<td>SMD_TO_SMD</td>
<td>SMD to SMD</td>
<td>Spacing</td>
</tr>
<tr>
<td>COPPER_TO_TRACK</td>
<td>Shape to Line</td>
<td>Spacing</td>
</tr>
<tr>
<td>COPPER_TO_VIA</td>
<td>Shape to Via</td>
<td>Spacing</td>
</tr>
<tr>
<td>COPPER_TO_PAD</td>
<td>Shape to Pin</td>
<td>Spacing</td>
</tr>
<tr>
<td>COPPER_TO_SMD</td>
<td>Shape to SMD</td>
<td>Spacing</td>
</tr>
<tr>
<td>COPPER_TO_COPPER</td>
<td>Shape to Shape</td>
<td>Spacing</td>
</tr>
<tr>
<td>OUTLINE_TO_TRACK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTLINE_TO_VIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTLINE_TO_PAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTLINE_TO_SMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTLINE_TO_COPPER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRILL_TO_TRACK</td>
<td>Hole to Line</td>
<td>Spacing</td>
</tr>
<tr>
<td>DRILL_TO_VIA</td>
<td>Hole to Via</td>
<td>Spacing</td>
</tr>
<tr>
<td>DRILL_TO_PAD</td>
<td>Hole to Pin</td>
<td>Spacing</td>
</tr>
<tr>
<td>DRILL_TO_SMD</td>
<td>Hole to SMD</td>
<td>Spacing</td>
</tr>
<tr>
<td>DRILL_TO_COPPER</td>
<td>Hole to Shape</td>
<td>Spacing</td>
</tr>
<tr>
<td>SAME_NET_SMD_TO_VIA</td>
<td></td>
<td>Samenet Spacing</td>
</tr>
<tr>
<td>SAME_NET_VIA_TO_VIA</td>
<td></td>
<td>Samenet Spacing</td>
</tr>
<tr>
<td>MIN_TRACK_WIDTH</td>
<td>Min Line Width</td>
<td>Physical</td>
</tr>
<tr>
<td>MAX_TRACK_WIDTH</td>
<td>Max Line Width</td>
<td>Physical</td>
</tr>
<tr>
<td>DRILL_TO_DRILL</td>
<td>Hole to Hole</td>
<td>Spacing</td>
</tr>
</tbody>
</table>
Working with the PADS to Allegro Translator

<table>
<thead>
<tr>
<th>Rule Type</th>
<th>Description</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODY_TO_BODY</td>
<td>Package-Package</td>
<td>Setup -> Constraints -> DFA Constraints</td>
</tr>
<tr>
<td>HIGH_SPEED_RULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN_LENGTH</td>
<td>Min total etch Length</td>
<td>Electrical</td>
</tr>
<tr>
<td>MAX_LENGTH</td>
<td>Max total etch Length</td>
<td>Electrical</td>
</tr>
<tr>
<td>STUB_LENGTH</td>
<td>Wiring/Stub Length</td>
<td>Electrical</td>
</tr>
<tr>
<td>PARALLEL_LENGTH</td>
<td>Wiring/Max Parallel</td>
<td>Electrical</td>
</tr>
<tr>
<td>PARALLEL_GAP</td>
<td>Max Parallel</td>
<td>Electrical</td>
</tr>
<tr>
<td>MIN_DELAY</td>
<td>Propagation delay/Min</td>
<td>Electrical</td>
</tr>
<tr>
<td>MAX_DELAY</td>
<td>Propagation delay/Max</td>
<td>Electrical</td>
</tr>
<tr>
<td>MIN_IMPEDANCE</td>
<td>Single-line Impedance/ (target - tolerance)</td>
<td>Electrical</td>
</tr>
<tr>
<td>MAX_IMPEDANCE</td>
<td>Single-line Impedance/ (target + tolerance)</td>
<td>Electrical</td>
</tr>
<tr>
<td>MATCH_LENGTH_TOLERANCE</td>
<td>relative propagation delay</td>
<td>Electrical</td>
</tr>
<tr>
<td>ROUTE_RULE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROUTE_PRIORITY</td>
<td>ROUTE_PRIORITY Property</td>
<td>Property</td>
</tr>
<tr>
<td>MAX_NUMBER_OF_VIAS</td>
<td>Max Via count</td>
<td>Electrical</td>
</tr>
<tr>
<td>VALID_LAYER 1</td>
<td>Allow Etch</td>
<td>Physical</td>
</tr>
<tr>
<td>VALID_LAYER 2</td>
<td>Allow Etch</td>
<td>Physical</td>
</tr>
<tr>
<td>VALID_VIA_TYPE</td>
<td>vias</td>
<td>Physical</td>
</tr>
<tr>
<td>DIFF_PAIR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIN_LENGTH</td>
<td>Min total etch Length</td>
<td>Electrical</td>
</tr>
<tr>
<td>MAX_LENGTH</td>
<td>Max total etch Length</td>
<td>Electrical</td>
</tr>
<tr>
<td>GAP</td>
<td>Differential pair / Primary gap</td>
<td>Physical</td>
</tr>
<tr>
<td>WIDTH</td>
<td>Differential pair / Min line width</td>
<td>Physical</td>
</tr>
</tbody>
</table>
Translation of RULES_SECTION of PADS .asc to the Constraint Manager

Below is a section from the RULES_SECTION

```
RULE_SET (1)
{
FOR :
{
DEFAULT:
}
AGAINST :
{
DEFAULT:
}
LAYER 0
CLEARANCE_RULE :
{
TRACK_TO_TRACK 304800
VIA_TO_TRACK 304800
VIA_TO_VIA 304800
SAME_NET_SMD_TO_VIA 228600
MIN_TRACK_WIDTH 304800
MAX_TRACK_WIDTH 228600
}
```

- TRACK_TO_TRACK 304800 > translates to DEFAULT spacing CSet (0.008 inches)
- VIA_TO_TRACK 304800 > translates to DEFAULT spacing CSet (0.008 inches)
Working with the PADS to Allegro Translator

VIA_TO_VIA 304800 > translates to DEFAULT spacing CSet (0.008 inches)

SAME_NET_SMD_TO_VIA 228600 > translates to DEFAULT same net spacing CSet (0.006 inches)

MIN_TRACK_WIDTH 304800 > translates to DEFAULT physical CSet (0.008 inches)
MAX_TRACK_WIDTH 2286000 > translates to DEFAULT physical CSet (0.06 inches)
Translating PADS library

From 16.6 onwards, Allegro PCB Editor provides a translator to translate from Mentor PADS physical components library migration to Allegro PCB Editor library database.

The new utility `pads_lib_in` is added to accomplish the migration.

The outlined process covers translating physical component library that includes part types, decals, padstacks, and shapes.
Working with the PADS to Allegro Translator

Exporting data from Mentor PADS

Before translating library data they must be exported from PADS Library manager. The export process is following:

1. Open Library Manager by choosing PADS Layout File — Library.
2. Select the library for export in the top list
3. Select objects types for export: decals and parts are supported
4. Select objects to export using filter or selection methods
5. Click Export to export selection to file (* .d for decals, *.p for parts)

More details about library export process can be found in PADS Layout User’s Guide and Reference Manual, “Export Library Data” section
Library data mapping

Allegro symbol data is compiled from PADS part type and PCB decal structures. Part type contains primary logical information and references to a number of PCB decals that hold physical implementation. The information is compiled and translated to an Allegro symbol.

- Part Type definition content
 - Part type header
 - Name
 - Reference to PCB decals
 - Units
 - Summary of the part content
 - Attribute information
 - Gate information
 - Signal pin information
 - Alphanumeric pins

- PCB Decal definition
 - PCB Decal header
 - Name
 - Units
 - Summary of the part content
 - Decal attributes
 - Attribute label locations
 - Piece definitions
 - Geometry definition on layers
 - Text definitions
 - Terminal definitions
 - Physical pins location and pin numbers for mapping
 - Pad-stack definitions
 - Pads shapes and layers
 - Drilling, plating, thermal information
 - Custom pad shapes definition

Pads_lib_in translator usage

GUI execution modes
Working with the PADS to Allegro Translator

Translator UI can be executed in two ways:

- From Allegro menu File – Import — CAD Translators – PADS Library

![PADS Library Translator UI](image1)

- From command line by executing `pads_lib_in`

![PADS Layout Library to Allegro Translator](image2)

For both forms the input parameters are:

- Input directory with library part and decal files
- Output directory for resulting allegro library files
- Path to loaded/generated Options .ini file

Layer mapping

When Show option dialog is enabled and, for standalone run, option dialog pops up and enables layer mapping. In PADS, a layer is designated by a numerical ID, in Allegro it is a class/subclass pair.

You should have clear understanding of the purpose of all layers in the library and explicitly select appropriate class/subclass pair using list boxes at the bottom of dialog. This operation should be performed for all translating object types: copper, decal and pads:
- Copper layer mapping is used to create etch items (shapes, clines) on top or bottom layer in Allegro.

- Decal layer mapping is used to create package geometry (lines, shapes).

- Pad layer mapping is used to create padstack layers and solder/paste mask.

Non-mapped layers are to be skipped from translation and appropriate objects are missed in target library.
Working with the PADS to Allegro Translator

Result files options

By default translator creates *.dra files for each translated component. The format is self-sufficient and includes all required information including padstacks. These are the options for generating other file types:

- Package symbol files (.psm) for placing symbols, .pad files are created for padstacks
- Mechanical symbol files (.bsm) for mechanical symbols (if any)
- Drawing files for padstacks, .ssm files are created for custom pad shapes, .fsm for flash symbols
- Device files (.txt) contain logic information

File generation options are saved to the .ini file and is off by default.

Translation log review

The pads_lib_in.log file provides useful information about translation results that can be used for adjusting the next iteration.

Structure of log file:

- PADS Library ASCII files which have been translated: part types and decals
- Created Allegro symbols
- Layer mapping summary including non-mapped layers and missed objects count
- Errors and warnings that occurred during translation
- Summary of library translation and status
Batch translation mode

For translating huge libraries, the translator can be used in batch mode.

Below is the description of available options:

- `–input <input directory name>`: Sets directory with PADS Library ASCII files
- `–output <output directory>`: Sets output directory
- `–opt <options file>`: Sets options file name
- `–psm`: Sets create package symbol files
- `–dev`: Sets create device files
- `–bsm`: Sets create mechanical symbol files
- `–custom`: Sets create drawing files for the custom padstacks
Working with the PADS to Allegro Translator

Known problem and their solutions

If you are unable to import PADS database to Allegro PCB Editor, one of the reasons can be database integrity. You can import ASCII file back in PADS PowerPCB and check if it imports successfully. If it results in error messages, try to remove any errors before proceeding further. In PADS PowerPCB, perform a database integrity check by using the keyboard shortcut i. After the problems are resolved, export the new ASCII file again and then try to import it into Allegro PCB Editor using File — Import — CAD Translators — PADS.

The same could be started with the Allegro command pads in.

pads_in translator translates thermal ties with a zero line width.

If pads_in translator translates thermal ties to positive planes with a zero line width, use the shareware SKILL program cwidth.il that may be downloaded from

Working with PADS to Allegro Translator

This skill program helps change all zero line widths to the desired width.

pads_in fails with error for illegal characters in ASCII file

Pads ASCII file containing illegal characters in padstack, decals which are not supported by Allegro, fail to execute in pads_in.

The lists of illegal characters in translations are

" $ ~ @ # $ % ^ & * () = ' " [] ? / < > ! \ . , ; { } ` + | "

Illegal character is replaced with the underscore (_) unless the name has already been used for replacement. For example, abc(de and abc<de may both be replaced with abc_de. To avoid duplication, the second term will be replaced with abc0de. If _ leads to duplication, 0-9 will be tried instead.

The error message below indicates that there is an illegal character in Part type which is not parsed in Allegro.

PARSE ERROR: Part 'Q2' used an undefined PartType 'nd355anct '. Line 3918: Q2 nd355anct~~ 34921356 38647843 0.000 U N 0 -1 0 -1 2
ERROR: Finished with errors.
Working with the PADS to Allegro Translator

Note that not all illegal characters are currently replaced by Allegro. The *names.map* file generated during the translation contains name change logs from pads to Allegro PCB editor.

Example:

```
# Name changes log file
# Format: <PADS name> -> <Allegro name>
WAFER-POGO~~WAFER-POGO -> WAFER-POGO WAFER-POGO
```

You may need to change the pads database to remove the illegal characters.

Pads_in fails with no error in log file

When importing a PADS design the translation runs through until it is writing the Allegro PCB Editor database. It then terminates with the error listed in the log file. There are no details indicating what the problem is and there are no clines in the translated design.

Following is written in the *pads_in.log* file:

```
ERROR: Failed while writing the Allegro database.
ERROR: Finished with errors.
```

For example, the problem in a design was the names used for the vias. The via names contained colons (:) that are not legal in Allegro PCB Editor. Replacing the colon with an underscore allowed the translation to complete without any errors.

What is character name limits for pads translation?

Currently the character name limit for pads_in translation is 30 characters. If a name is too long, the first 15 characters are retained in sequence followed by either underscore or any digit from 0 to 9, and then followed by the remaining 14 characters in sequence.

For example, if the name is `abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz`, it is replaced by `abcdefghijklmn_lmnopqrstuvwxyz`

The constraints in such cases cannot be translated. The log file contains the following error message.

```
ERROR: Unable to load constraints.
```
When trying to import older versions of pads database, \texttt{pads_in} fails with the following error in the log file.

\begin{verbatim}
ERROR: Parse error on line 100.
ERROR: Finished with errors.
\end{verbatim}

Or

\begin{verbatim}
PARSE ERROR: Unrecognized format in header line of input file.
\end{verbatim}

The above error occurs when older versions of PADS ASCII file is given as input to \texttt{pads_in}.

The newer version of the ASCII can be exported using PADS version 5 or later by choosing \textit{File --- Export --- ASCII}.

If a newer version of PADS is not available, export ASCII by changing the version string in the ASCII file.

For example, in the following:

\begin{verbatim}
!PADS-POWERPCB-V3.0-MILS! DESIGN DATABASE ASCII FILE 1.0
\end{verbatim}

Change to the latest version available:

\begin{verbatim}
!PADS-POWERPCB-V2007.0-MILS! DESIGN DATABASE ASCII FILE 1.0
\end{verbatim}

Note that with this method you need to verify the translated design thoroughly. Cadence recommends to output \texttt{.asc} (ASCII) file from the PADS layout software.

If you are exporting PADS ASCII (\texttt{.asc}) file from any third party translators, manually verify the General Parameters of the PCB design section in the \texttt{.asc} file.
Pads_in creates lots of Net shorting DRCs for cross hatch shape.

If the translated board has cross-hatch shapes, there are chances of getting Net shorting DRCs errors on the board.

When importing Pads database with cross-hatch shapes, the line width of the cross hatch shape is translated as 0 units. The lines extend beyond the shape and create shorts with adjacent pins and shapes.

After translation, change these shapes to solid and it can again convert back to cross hatch with desired values for cross hatching to remove net shorting errors.

Artwork fails with below error message on translated board.

While generating artwork for the translated board, the following error message is displayed because of the overlapping voids of two shapes.

> Found at the bottom of the Artwork Control Form
> Error A problem occurred - please check the logfile.

> Found in the photoplot.log file:

> ERROR: aborting film - Shape with first seg=(45.982 - 19.140) [layer=BOTTOM]

> has a void with extents [(38.959 -11.658) (59.635 0.372)] that touches another shape with first seg=(35.306 -3.078). Manually resolve problem.

> ERROR: aborting film - artwork will not be generated!

> Error in BOTTOM--halting output. Artwork file not generated.

*** ERROR with BOTTOM

This can be resolved using the Cadence Online Solution, refer 'Related Article' section.
Summary
This application note explains the translation from PADS to Allegro PCB Editor database and its Library. It could also help in troubleshooting common translation errors.